Tuesday, 3 January 2012

General Dynamics F-16 Fighting Falcon


Role Multirole jet fighter
National origin United States
Manufacturer General Dynamics
Lockheed Martin
First flight 2 February 1974
Introduction 17 August 1978
Status Active, in production
Primary users United States Air Force
25 other users (see operators page)
Number built 4,450+
Unit cost F-16A/B: US$14.6 million (1998 dollars)[1]
F-16C/D: US$18.8 million (1998 dollars)[1]
Variants General Dynamics F-16 VISTA
Developed into Vought Model 1600
General Dynamics F-16XL
Mitsubishi F-2

The General Dynamics F-16 Fighting Falcon is a multirole jet fighter aircraft originally developed by General Dynamics for the United States Air Force (USAF). Designed as an air superiority day fighter, it evolved into a successful all-weather multirole aircraft. Over 4,400 aircraft have been built since production was approved in 1976.[2] Although no longer being purchased by the U.S. Air Force, improved versions are still being built for export customers. In 1993, General Dynamics sold its aircraft manufacturing business to the Lockheed Corporation,[3] which in turn became part of Lockheed Martin after a 1995 merger with Martin Marietta.[4]
The Fighting Falcon is a fighter with numerous innovations including a frameless bubble canopy for better visibility, side-mounted control stick to ease control while maneuvering, a seat reclined 30 degrees to reduce the effect of g-forces on the pilot, and the first use of a relaxed static stability/fly-by-wire flight control system that makes it a highly nimble aircraft. The F-16 has an internal M61 Vulcan cannon and has 11 hardpoints for mounting weapons, and other mission equipment.[1] Although the F-16's official name is "Fighting Falcon", it is known to its pilots as the "Viper", due to it resembling a viper snake and after the Battlestar Galactica Colonial Viper starfighter.[5][6]
In addition to active duty US Air Force, Air Force Reserve Command, and Air National Guard units, the aircraft is also used by the USAF aerial demonstration team, the U.S. Air Force Thunderbirds, and as an adversary/aggressor aircraft by the United States Navy. The F-16 has also been procured to serve in the air forces of 25 other nations.[2]

Lightweight Fighter Program

Experience in the Vietnam War revealed the need for air superiority fighters and better air-to-air training for fighter pilots.[7] Based on his experiences in the Korean War and as a fighter tactics instructor in the early 1960s Colonel John Boyd with mathematician Thomas Christie developed the Energy-Maneuverability theory to model a fighter aircraft's performance in combat. Boyd's work called for a small, lightweight aircraft that could maneuver with the minimum possible energy loss, and which also incorporated an increased thrust-to-weight ratio.[8][9] In the late 1960s, Boyd gathered a group of like-minded innovators that became known as the Fighter Mafia and in 1969 they secured DoD funding for General Dynamics and Northrop to study design concepts based on the theory.[10][11]
Air Force F-X proponents remained hostile to the concept because they perceived it as a threat to the F-15 program. However, the Advanced Day Fighter concept, renamed F-XX gained civilian political support under the reform-minded Deputy Secretary of Defense David Packard, who favored the idea of competitive prototyping. As a result in May 1971, the Air Force Prototype Study Group was established, with Boyd a key member, and two of its six proposals would be funded, one being the Lightweight Fighter (LWF). The Request for Proposals issued on 6 January 1972 called for a 20,000-pound (9,100 kg) class air-to-air day fighter with a good turn rate, acceleration and range, and optimized for combat at speeds of Mach 0.6–1.6 and altitudes of 30,000–40,000 feet (9,100–12,000 m). This was the region where USAF studies predicted most future air combat would occur. The anticipated average flyaway cost of a production version was $3 million. This production plan, though, was only notional as the USAF had no firm plans to procure the winner.[12][13]

Finalists selected and flyoff

Two jet aircraft flying together over mountain range and cloud
A right side view of a YF-16 (foreground) and a Northrop YF-17, each armed with AIM-9 Sidewinder missiles.
Five companies responded and in 1972, the Air Staff selected General Dynamics' Model 401 and Northrop's P-600 for the follow-on prototype development and testing phase. GD and Northrop were awarded contracts worth $37.9 million and $39.8 million to produce the YF-16 and YF-17, respectively, with first flights of both prototypes planned for early 1974. To overcome resistance in the Air Force hierarchy, the Fighter Mafia and other LWF proponents successfully advocated the idea of complementary fighters in a high-cost/low-cost force mix. The "high/low mix" would allow the USAF to be able to afford sufficient fighters for its overall fighter force structure requirements. The mix gained broad acceptance by the time of the prototypes' flyoff, defining the relationship of the LWF and the F-15.[14][15]
The YF-16 was developed by a team of General Dynamics engineers led by Robert H. Widmer.[16] The first YF-16 was rolled out on 13 December 1973, and its 90-minute maiden flight was made at the Air Force Flight Test Center (AFFTC) at Edwards AFB, California, on 2 February 1974. Its actual first flight occurred accidentally during a high-speed taxi test on 20 January 1974. While gathering speed, a roll-control oscillation caused a fin of the port-side wingtip-mounted missile and then the starboard stabilator to scrape the ground, and the aircraft then began to veer off the runway. The GD test pilot, Phil Oestricher, decided to lift off to avoid crashing the machine, and safely landed it six minutes later. The slight damage was quickly repaired and the official first flight occurred on time. The YF-16's first supersonic flight was accomplished on 5 February 1974, and the second YF-16 prototype first flew on 9 May 1974. This was followed by the first flights of the Northrop's YF-17 prototypes on 9 June and 21 August 1974, respectively. During the flyoff, the YF-16s completed 330 sorties for a total of 417 flight hours;[17] the YF-17s flew 288 sorties, covering 345 hours.

Air Combat Fighter competition

Increased interest would turn the LWF into a serious acquisition program. North Atlantic Treaty Organization (NATO) allies Belgium, Denmark, the Netherlands, and Norway were seeking to replace their F-104G fighter-bombers.[19] In early 1974, they reached an agreement with the U.S. that if the USAF ordered the LWF winner, they would consider ordering it as well. The USAF also needed to replace its F-105 and F-4 fighter-bombers. The U.S. Congress sought greater commonality in fighter procurements by the Air Force and Navy, and in August 1974 redirected Navy funds to a new Navy Air Combat Fighter (NACF) program that would be a navalized fighter-bomber variant of the LWF. The four NATO allies had formed the "Multinational Fighter Program Group" (MFPG) and pressed for a U.S. decision by December 1974; thus the USAF accelerated testing.[20][21][22]
YF-16 on display at the Virginia Air and Space Center
To reflect this more serious intent to procure a new fighter-bomber design, the LWF program was rolled into a new Air Combat Fighter (ACF) competition in an announcement by U.S. Secretary of Defense James R. Schlesinger in April 1974. Schlesinger also made it clear that any ACF order would be for aircraft in addition to the F-15, which extinguished opposition to the LWF.[21][22] ACF also raised the stakes for GD and Northrop because it brought in competitors intent on securing what was touted at the time as "the arms deal of the century".[23] These were Dassault-Breguet's proposed Mirage F1M-53, the SEPECAT Jaguar, and the proposed Saab 37E "Eurofighter". Northrop offered the P-530 Cobra, which was similar to the YF-17. The Jaguar and Cobra were dropped by the MFPG early on, leaving two European and the two U.S. candidates. On 11 September 1974, the U.S. Air Force confirmed plans to place an order for the winning ACF design to equip five tactical fighter wings. Though computer modeling predicted a close contest, the YF-16 proved significantly quicker going from one maneuver to the next, and was the unanimous choice of those pilots that flew both aircraft.[24] On 13 January 1975, Secretary of the Air Force John L. McLucas announced the YF-16 as the winner of the ACF competition.[25]
The chief reasons given by the Secretary were the YF-16's lower operating costs, greater range and maneuver performance that was "significantly better" than that of the YF-17, especially at supersonic speeds. Another advantage of the YF-16 – unlike the YF-17 – used the Pratt & Whitney F100 turbofan engine, the same powerplant used by the F-15; such commonality would lower the cost of engines for both programs.[26] Secretary McLucas announced that the USAF planned to order at least 650, possibly up to 1,400 production F-16s. In the Navy Air Combat Fighter (NACF) competition, on 2 May 1975 the Navy selected the YF-17 as the basis for what would become the McDonnell Douglas F/A-18 Hornet


Improvements and upgrades

F-16 Fighting Falcon.ogv
F-16 Fighting Falcon video by USAF
One change made during production was augmented pitch control to avoid deep stall conditions at high angles of attack. The stall issue had been raised during development, but had originally been discounted in the early design stages. Model tests of the YF-16 conducted by the Langley Research Center revealed a potential problem, but no other laboratory was able to duplicate it. YF-16 flight tests were not sufficient to expose the issue, it required later flight testing on the FSD aircraft to demonstrate there was a real concern. In response, the areas of the horizontal stabilizer were increased 25% on the Block 15 aircraft in 1981 and retrofitted later on to earlier aircraft. Besides a significant reduction in the risk of deep stalls, the larger horizontal tail also improved stability and permitted faster takeoff rotation.[36][37]
In the 1980s, the Multinational Staged Improvement Program (MSIP) was conducted to evolve new capabilities for the F-16, mitigate risks during technology development, and ensure the aircraft's worth. The program upgraded the F-16 in three stages. The MSIP process permitted the introduction of new capabilities quicker, at lower costs and with reduced risks, compared to traditional independent programs to upgrade and modernize aircraft.[38] Other upgrade programs, including service life extensions, have been conducted on the F-16.[39]


Pakistan

PAF F-16s arrive at Red Flag 2010 in Nevada

During the Soviet-Afghan war, between May 1986 and January 1989, Pakistan Air Force (PAF) F-16s shot down at least 10 intruders from Afghanistan.[75]
The Pakistan Air Force has used its F-16s in various foreign and internal military exercises, such as the "Indus Vipers" exercise in 2008 conducted jointly with Turkey.[76] Since May 2009, the PAF has also been using their F-16 fleet to attack militant positions and support the Pakistan Army's operations in North-West Pakistan against the Taliban insurgency.[77]
PAF F-16s patrolled the Indian border during the Kargil Conflict and during the 2008 tension with India. PAF F-16s also participated in the International Red Flag (United States Air Force) exercises in 2010


No comments:

Post a Comment